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Abstract. We introduce several new (and recall one old) tableau models for Schubert

polynomials. Applications include a bijective proof of Kohnert’s rule.

Résumé. Nous introduisons plusieurs nouveaux (et rappelons un ancien) modeles de
tableau pour les polynémes de Schubert. Les applications comprennent une preuve

bijective de la regle de Kohnert.
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1 Introduction

Lascoux and Schiitzenberger [6] defined polynomial representatives for the Schubert
classes in the cohomology ring of the complete flag variety that have beautiful algebraic
and combinatorial properties. The structure constants for these Schubert polynomials give
intersection numbers for Schubert varieties, so there is much to be gained from devel-
oping models that might facilitate computations or, better, combinatorial formulas for
these numbers. In this abstract, we survey new and old combinatorial models for Schu-
bert polynomials, and we relate them to one another with simple bijections between the
underlying combinatorial sets. These models are illustrated in Figure 1.
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Figure 1: Combinatorial models for the reduced expression (5,6,3,4,5,7,3,1,4,2,3,6).

In Section 2 we review of the monomial expansion of Schubert polynomials due
to Billey, Jockusch, and Stanley [2]. We reformulate this using the fundamental slide
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polynomials of Assaf and Searles [1] to realize Schubert polynomials as the generating
polynomials for reduced expressions. We then present our models.

Section 3 introduces the new model of reduced diagrams, which resembles the pipe
dream model, though with a more direct connection to reduced expressions. Section 4
recalls the balanced tableaux model of Edelman and Greene [3] and gives a natural
bijection with reduced diagrams by pushing boxes of the latter up. Section 5 introduces
the new model of Rothe tableaux, which resemble balanced tableaux but stem from not
allowing boxes of a reduced diagram to move right when pushed down, as indicated in
the bijection with balanced tableaux. This leads naturally to Section 6, where we recall
Kohnert diagram [5] and give a simple bijection with Rothe tableaux.

2 Schubert polynomials

Lascoux and Schiitzenberger [6] originally defined polynomial Schubert polynomials via
divided difference operators, with a combinatorial model given by Billey, Jockusch, and
Stanley [2]. We begin our treatment with the latter formulation, and we refer the reader
to Macdonald [7] for a beautiful and thorough treatment of the underlying combina-
torics.

A reduced expression is a sequence p = (i, ...,i1) such that the permutation s; ---s;, has
k inversions, where s; is the simple transposition that interchanges i and i + 1. Let R(w)
denote the set of reduced expressions for w. For example, the elements of R(153264) are
shown in Figure 2.

(5,3,2,3,4) (52,3,2,4) (52,3,42) (3,52,3,4) (3,2,53,4) (3,2,3,54)
(2,5,3,4,2) (2,3,5,4,2) (2,5,3,2,4) (2,3,52,4) (2,3,2,54)

Figure 2: The set of reduced expressions for 153264.

For p € R(w), say that a strong composition « is p-compatible if « is weakly increasing
with a; < aj 1 whenever p; <pj,1 and &; < p;.

Definition 2.1 ([2]). The Schubert polynomial &, is given by

6w — Z x“l.”xw(w)’ (2].)
peR(w)
« p—compatible

where the sum is over compatible sequences « for reduced expressions p.

We harness the power of the fundamental slide polynomials of Assaf and Searles [1]
to re-express Schubert polynomials as the generating function for reduced expressions.
Given a weak composition 4, let flat(a) denote the strong composition obtained by re-
moving all zero parts.
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Definition 2.2 ([1]). For a weak composition a of length 7, define the fundamental slide
polynomial F, = §a(x1,...,%4) by
D N (22)

b>a
flat(b) refines flat(a)
where b >a means by +--+ by >a;+---+a forallk=1,...,n.

To facilitate virtual objects as defined below, we extend notation and set
g = 0. (2.3)

The run decomposition of a reduced expression p, denoted by (p(®)|---|o(1)), partitions
p into increasing sequences of maximal length. For example, the run decomposition of
(5,6,3,4,5,7,3,1,4,2,3,6), a reduced expression for 41758236, is (56|3457|3|14|236).

Definition 2.3. For a reduced expression p with run decomposition (p®)|---[p(1)), set
e = pgk) and, for i < k, set r; = min(pgl),ml —-1). Define the weak descent composition of
p, denoted by des(p), by des(p),, = [o())| and all other parts are zero if all ; > 0 and

des(p) = & otherwise.

We say that p is virtual if des(p) = @. For example, (5,6,3,4,5,7,3,1,4,2,3,6) is virtual
since r1 = 0, but the weak descent composition for (6,7,4,5,6,8,4,2,5,3,4,7), a reduced
expression for 152869347, is (3,2,1,4,0,2). Note the reversal from the run decomposition
to the descent composition.

Theorem 2.4. For w any permutation, we have

6w = Z gdes(P)/ (24)
peR(w)

where the sum may be taken over non-virtual reduced expressions p.

For example, from Figure 2, we have seven non-virtual elements, giving

S155264 = 5(0,3,1,01) T 8(22,00,1) +5(1,30,0,1) +5(0,32,0,0) T 5(22,1,00) +5(1,31,00) +5(23,00,0,)-

3 Reduced diagrams

A diagram is a finite collection of cells in Z x Z*. The weight of a diagram D, denoted by
wt(D), is the weak composition whose ith part is the number of cells in row 7 of D if all
cells have positive row index and @ otherwise. A diagram D is virtual if wt(D) = @.

Given a reduced expression p, we construct a labeled diagram ID(p) such that the
row reading word of ID(p) is p and wt(ID(p)) = des(p).
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Figure 3: The diagram for the reduced expression (5,6,3,4,5,7,3,1,4,2,3,6).

Definition 3.1. The diagram of a reduced expression p, denoted by ID(p), is constructed as
follows. Place values of p(!) consecutively from smallest to largest in row r;, as defined
in Definition 2.3. Group cells together: begin with highest (then smallest, if tied) un-
grouped entry, say i, search the next row down for i — 1 in which case you take it and
continue, otherwise search for i in which case you end the group, otherwise continue to
the next row down. Maintaining the order within rows, push cells to the right until all
entries in each group lie in the same column.

For example, Figure 3 shows the diagram for (5,6,3,4,5,7,3,1,4,2,3,6). Two dia-
grams are equivalent if they differ by swapping columns that preserves row order.

Definition 3.2. A reduced diagram is a positive integer filling of a diagram such that

(i) entries are at least as large as the row index;

(ii) rows strictly increase from left to right;
(iii) columns form increasing intervals from bottom to top;
(iv) any i that lies strictly left of an i + 1 is weakly above it;
(v) reading entries i from left to right strictly descends;
(vi) the row reading word is reduced.

Condition (vi) has several equivalent formulations in terms of restrictions on cells.

Definition 3.3. A reduced diagram is quasi-Yamanouchi if the leftmost cell of a row has
entry equal to its row index or has a cell immediately above and weakly right of it.

Denote the set of quasi-Yamanouchi reduced diagrams of shape w by QRD(w).

For example, Figure 4 shows QRD(153264). Note that exactly seven elements are
non-virtual, and they have weights that agree with the descent compositions for Figure 2.
Moreover, the row reading words of the diagrams in Figure 4 are given by the words in
Figure 2, respectively. It turns out that the diagram itself uniquely determines the values
that can make it a reduced diagram. In particular, we have the following.
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Figure 4: The quasi-Yamanouchi reduced diagrams for 153264.

Theorem 3.4. The row reading word is a bijection QRD(w) - R(w) that takes weights to weak
descent compositions. In particular, the Schubert polynomial &, is given by

Suw = Z Swt(D)/ (3.1)
DeQRD(w)

where the sum may be taken over non-virtual quasi-Yamanouchi reduced diagrams for w.

4 Balanced tableaux

We transform the reduced diagram model for Schubert polynomials into bijective fillings
of the Rothe diagram of a permutation by pushing cells up to the Rothe diagram shape.

Definition 4.1. The Rothe diagram of a permutation w, denoted by ID(w), is given by
D(w) = {(i,w;j) |i<jand w; >w;} c Z*" xZ". 4.1)

L[]

Figure 5: The Rothe diagram for 41758236.

Edelman and Greene [3] introduced balanced labelings of the diagrams in order to
enumerate reduced expressions. Fomin, Greene, Reiner, and Shimozono [4] generalized
this, though their proofs rely on complicated results from geometry. We recover those
results with a simple bijection.
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Definition 4.2. A standard balanced tableau is a bijective filling of a Rothe diagram with
entries from {1,2,...,n} such that for every entry of the diagram, the number of entries
to its right that are greater is equal to the number of entries above it that are smaller.

Denote the set of standard balanced tableaux on ID(w) by SBT(w).

4] 2] 1] 5] 5] 5]
3[2[1] 3]4]1] 3]4]2] 3[2]1] 4[2]1] 4[3]1]
1] 1] 2] 2] 3]

3]5]2] 4[5]2] 3[5]1] 4[5]1] 4[5]1]

Figure 6: The standard balanced tableaux for 153264.

Definition 4.3. The descended diagram of a standard balanced tableau R, denoted by
ID(R), is the diagram obtained as follows: find the lowest (smallest if tied) i that lies
above some j > i; push the cell containing i, as well as smaller entries below i, down; if,
in doing this, 7 jumps below some k > i in the same column, then swap everything in the
column of k with the column of the first entry to its right that is larger; continue until
the reverse row reading word is the identity.

211 211 1| iy
64 6[4 6
9[8] [0[D) 98 910 [10[9 [10[9] [8]7]
_ 6] 6]
5[3]2 5[3]2 5 4 5 4 5 4
3] 1 2[1] 2[1]

Figure 7: Constructing the descended diagram of a balanced tableau for 41758236.

For example, see Figure 7. The shape that results from the descended diagram of
a balanced tableau for w is the shape of a necessarily unique reduced diagram for w.
For example, the descended diagrams for the standard balanced tableaux in Figure 6 are
shown in Figure 8. Compare this with Figure 4.
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4] (5] [4] E_ 5]
3]2[1] [4]3 [4]3]2] 3]2[1 4 [3 4[3]2
2[1] 1 201 1
(5] [4] (5]4]3 5] [4] (5]4]3 (5[4
32 2 3 2[1 3]2
1] 1 2[1] 1]

Figure 8: Descended diagrams for the standard balanced tableaux of shape 153264.

Theorem 4.4. Descended diagrams give a bijection between standard balanced tableaux and
quasi-Yamanouchi reduced diagrams. In particular, the Schubert polynomial for w is given by

Gw= Y Tdes(R) (4.2)
ReSBT(w)

where the sum may be taken over non-virtual standard balanced tableaux of shape w.

5 Rothe tableaux

The braid relation on reduced expressions results in the columns moving right on re-
duced diagrams and in the balanced condition on tableaux. To make diagrams that
better resemble the Rothe diagram, we make the following definition for tableaux.

Say that i is inverted with a row below if that row has an entry k in the column of i and
an entry j immediately right of k such that i < k,j. Say that j is blocked by a column to the
left if there exist k, I in the same row below j, with k in the left column and ! immediately
right of k such that j <k, I, and, letting h be the entry in the row of k and column of j (or
take h = 0 if none exists), j > h.

Definition 5.1. A standard Rothe tableau is a bijective filling of a Rothe diagram with
entries from {1,2,...,n} such that

(i) given i above k in the same column, either i > k or i is inverted with the row of k;

(ii) given i left of j in row rp, say in columns ¢; < ¢j, either i > j or there exist rows
r1 > - > ry where the entry ji in row 7 and column ¢; (or take jx = 0 if no entry
exists) satisfies j = jo > j; > -+ > jy—1 > 1 > ju and each jy is blocked by row ry_;.
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4] 2] 1] 5] 5] 5]
3]2]1] 413]1] 4[3]2] 3]2[1] 4[2]1] 413]1]
1] 1] 2] 2] 3]

5[3]2] 5[4]2] 5[3]1] 5[4[1] 5[4]1]

Figure 9: The standard Rothe tableaux for 153264.

We denote the set of standard Rothe tableaux of shape w by SRT(w).
The run decomposition of a standard Rothe tableau T is T = (t(®]...|t(1)), where T
is the word n---21 broken between i+1 and i when i+ 1 lies weakly right of i in T.

For example, the run decomposition for the standard Rothe tableau in Figure 10 is
(12 11|10 987|6|54/321).

Definition 5.2. For a standard tableau T, let (t(¥)|...|t(1)) be the run decomposition of
T. Set ty = row(Tl(k)) and, fori <k, sett; = min(row(rl(l)), ti;1 —1). Define the weak descent
composition of T, denoted by des(T), by des(T);, = |[t()] and all other parts are zero if

t; >0 for all i, and set des(T) = @ otherwise.

For example, the standard Rothe tableau in Figure 10 is virtual because r1 = 0, but
moving cells up and right one position will give a standard Rothe tableau for 152869347
which will have weak descent composition (3,2,1,4,0,2).

Definition 5.3. The descended diagram of a standard Rothe tableau T, denoted by ID(T),
is the diagram obtained as follows: find the smallest i that lies above some j > i; push
i down to the nearest available position, jumping over larger entries and pushing down
entries less than i; continue until the reverse row reading word is the identity.

Notice that for a standard Rothe tableau T, we have des(T) = wt(ID(T)). Moreover,
if, when descending diagrams of the standard balanced tableaux in Figure 8, we do not
swap columns when an entry jumps a larger entry, we precisely obtain the diagrams in
Figure 11.

Definition 5.4. The unbalancing of a standard balanced tableau R, denoted by U(R), is
the tableau obtained as follows. Let D = ID(R), and let sort(R) denote R with its rows
sorted into decreasing order. Beginning with the lowest row and the leftmost cell therein
of D, move the cell left until it lies in the same column as in sort(R). If the cell cannot
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1211 2 2[1] @)
64 64 6
10[9] [8[1] 10/9 10{9] 10[9] 10[9] [8]7]
- 6 6
513]2 513]2 5 |4 5 |4 5 |4
32 32 3]2
Figure 10: Constructing the descended diagram of a Rothe tableau for 41758236.
(4] 5] [4] E - 5]
3[2]1] 413 4[3]2] 312|1 4| |3 4|3(2
2] |1 1 211 1
S (4] 5]4]3 B m 5143 5|4
312 2 3 2] |1 3 |2
1 2 1 11]

Figure 11: The descended diagrams for the standard Rothe tableaux of shape 153264.

move left, then scan down the column for the highest cell below it that can move left and
move that cell instead. Continue right to the end of the row, then continue with the next
row above. Once finished, ascend the cells back to the Rothe diagram shape.

1211
6|4

9[8] [10[1]
513(2
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9| [8]7]
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U 1609\ 817]
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64

D 109] [8]1]
513[2

Figure 12: Unbalancing a balanced tableau to a Rothe tableau for 41758236.

For an example of unbalancing, see Figure 12.

Theorem 5.5. Unbalancing gives a des-preserving bijection between standard balanced tableaux
and standard Rothe tableaux. In particular, the Schubert polynomial for w is given by

Gw:

>

TeSRT(w)

where the sum is over non-virtual standard Rothe tableaux of shape w.

Sdes(T)

(5.1)
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6 Kohnert diagrams

Kohnert [5] conjectured the following rule for computing a Schubert polynomial from
the Rothe diagram. Select a nonempty row and push the rightmost cell of that row
down to the first open position below it. Say that any diagram obtained in such a way is
a Kohnert diagram, and denote the set of Kohnert diagrams for w by KD(w).

Theorem 6.1 (Kohnert’s rule [5]). The Schubert polynomial for w is given by

Gp= Yy avD) 6.1)
DeKD(w)

where the sum may be taken over non-virtual Kohnert diagrams for w.

Kohnert and many others attempted a proof of this rule, and Winkel ultimately pub-
lished two proofs [8, 9], though neither of these proofs is widely accepted by the com-
munity given the intricate inductive argument that obfuscates the main idea of the proof.
Thus it remains open to give a simple, direct proof of Kohnert’s rule.

(%] (%] X

x| x[x] x | x x (%] x[x[x] x [ x
X x | x ]><|><|><‘ ><><|><‘ X X X

E -

x | x [ x | % X X xﬁﬁ x | x
x [ x[x] x [ x [ x| x[x] x x| |x

A E | FRE | FE B B

x | x| x x | % X [x] x [ x| x x | x
X x | x [x[x]x] x| x[x] X X X

(x| (x|

x | x [ x| [x] (x| (x| [x] x [ x[x

X x | x [x]x]x x | x [ x X X

Figure 13: The Kohnert diagrams of shape 153264.

It is easy to see that the descended diagram of a standard Rothe tableau has the shape
of a Kohnert diagram by following the pushing procedure.

Definition 6.2. A semi-standard Rothe tableau is a positive integer filling of a Rothe dia-
gram satisfying the conditions of Definition 5.1 such that no entry exceeds its row index.
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3] 3] 3] 3] 2] 1] 1]
2]2[2] 2[2]1] 2[1]1] 1]1]1] 1[1]1] 2]2[2] 2[2]1]
3] 3] 3] 3] 2] 1] 1]
2]2]2] 2[2]1] 2[1]1] 1]1]1] 1[1]1] 2]2[2] 2[2]1]
3] 3] 3] 3] 2] 1] 1]
22[2] | [2[2[1) | [2[11) | lafn) | [ | [20202] | [2]2]01]
3] 3] 3] 2] 1]

2[21] | [2[1[1] | [Ol1m) | 4alarg | 20201

Figure 14: The semi-standard Rothe tableaux of shape 153264.

For example, see Figure 14. The obvious standardization map that turns a semi-
standard filling into a standard filling and takes the weight to the weak descent compo-
sition results in the tableaux in Figure 9, counted with multiplicity.

Lemma 6.3. For w any permutation, we have

> Bdesmy =y, xMiD, (6.2)

TeSRT (w) TeSSRT(w)
where the left sum may be taken over non-virtual standard Rothe tableaux for w.
We can extend Definition 5.3 to semi-standard Rothe tableaux as follows.

Definition 6.4. The descended diagram of a semi-standard Rothe tableau T, denoted by
ID(T), is the diagram obtained by pushing all entries i down to row i.

By selecting the smallest i not in its row and the rightmost if tied, the Rothe tableau
conditions ensure that the descended diagram is a Kohnert diagram. Moreover, this
process is reversible for any Kohnert diagram.
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Theorem 6.5. Descended diagrams give a bijection between semi-standard Rothe tableaux and
Kohnert diagrams. In particular, the Schubert polynomial for w is given by

Gp= > WD), (6.3)
DeKD(w)

That is, Kohnert’s rule for Schubert polynomials, holds.
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